
The OpenStack Telemetry plugin for
Fuel Documentation

Release 1.0.1

Mirantis Inc.

Jan 16, 2017

CONTENTS

1 Overview 1

2 Installing the OpenStack Telemetry Plugin for Fuel 6

3 Configuring the OpenStack Telemetry Plugin for Fuel 8

i

CHAPTER

ONE

OVERVIEW

1.1 Introduction

The OpenStack Telemetry plugin collects metrics about OpenStack resources and provides this data through the
Ceilometer API. By default, the plugin supports only sample and statistics API. However, you can enable full Ceilome-
ter API support. The OpenStack Telemetry plugin implements all the Ceilometer functionality except complex queries
with InfluxDB and Elasticsearch as back ends for samples and events.

The OpenStack Telemetry plugin uses the following Ceilometer components:

• Polling agents (both central and computes)

• Notification agent

• Ceilometer API agent

Ceilometer collector is not used. Instead, the Telemetry plugin uses its own tools to collect telemetry data from the
Ceilometer agents.

The Telemetry plugin provides a better functionality if deployed together with the Kafka plugin. In this case, the
Telemetry plugin configures Kafka as a message bus for the Ceilometer agents and OpenStack services still send
notifications to RabbitMQ. To process this correctly, the Ceilometer notification agent listens to Kafka and RabbitMQ
simultaneously. However, the Telemetry plugin works without Kafka as well, but there are some scalability limitations.
For more information, see Limitations.

Depending on the message broker installed, Hindsight or Heka are used as collectors:

• Hindsight – fetches Ceilometer samples from Kafka and is installed on the same nodes as Kafka.

• Heka – works with RabbitMQ and is installed on controller nodes under Pacemaker.

We recommend installing the Telemetry plugin along with the StackLight plugins. In this case, the Telemetry plu-
gin will use the same databases as StackLight: InfluxDB and Elasticsearch. Otherwise, you can configure external
storages.

See also:

• Architecture overview

1.2 Architecture overview

The Telemetry plugin uses Ceilometer agents to collect data and its own processing mechanism to put the data into
storages. Ceilometer API is used to retrieve the data and present it to the end user. The following diagram shows the
OpenStack Telemetry plugin architecture:

1

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

Ceilometer agents are deployed as follows:

• The central agents service is placed on controllers. This service polls metrics about OpenStack services. A
central agent obtains the measurements and sends them to the notifications.sample queue.

Note: If Kafka is not deployed, only one central agent will be running in the environment under Pacemaker. If
Kafka is deployed, the coordination mechanism with Zookeeper will be automatically enabled.

• Compute agents work on compute nodes and use the same code base as the central agents. The main difference
is the configuration and the fact that compute agents use metadata cache that is enabled by the Telemetry plugin.
The compute agents request instance metadata from Nova API every 10 minutes, but not each polling interval.
For more information, see the corresponding specification. A compute agent obtains the measurements and
sends them to the notifications.sample queue.

• Notification agents are placed on controllers. Each notification agent performs the following:

– Obtains data from polling agents and OpenStack services. In other words, it listens to the
notifications.sample and notifications.info queues. The Telemetry plugin may be cus-
tomized at this point. By default, Ceilometer notification agents do not convert OpenStack notifications to
Ceilometer Events. If you enable Event API, notification agents will write Events directly to Elasticsearch
with the direct:// publisher.

– Performs transformations and sends the data further to the metering.sample queue.

1.2. Architecture overview 2

https://github.com/openstack/telemetry-specs/blob/master/specs/mitaka/Improve-instance-metering.rst

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

Note: In Mirantis OpenStack, Ceilometer notification agents do not require coordination. For more
details, see Custom transformed metrics.

A notification agent is the last Ceilometer-related processor. As a result, all the data collected is placed in the
metering.sample queue and Ceilometer Events are written into Elasticsearch (if Event API is enabled). Ceilome-
ter agents work with the message brokers through oslo.messaging and do not depend on the message broker we
use.

To continue data processing, Hindsight or Heka are used. The diagram above shows Heka/Hindsight separately be-
cause their placement depends on what is actually chosen. For information about Heka, see Heka documentation.
For proper work with Kafka, we use a new generation of Heka called Hindsight. Hindsight supports all the required
Kafka functionality but cannot be used to work with RabbitMQ. Therefore, these instruments are used depending on
the message broker type:

• If Kafka is deployed, Hindsight is deployed on the same nodes where Kafka is running. Hindsight is started with
four input plugins to make data consumption fast enough. Analysis plugins are not used. The output plugins
have a batching mechanism to deliver data into the storages in an optimal manner. Hindsight services are not
running under Pacemaker but will be restarted automatically in case of any failures. Heka is not used in this
scenario.

• If Kafka is not deployed, RabbitMQ is used as a transport system and Heka is running on each controller under
Pacemaker. Hindsight is not used in this scenario.

Once Heka or Hindsight receives a data sample, it is processed through a chain of plugins and finally sent to InfluxDB
or Elasticsearch.

1.3 Requirements

The OpenStack Telemetry plugin has the following requirements:

Requirement Version/Comment
Fuel 9.0 on Mitaka

If you use external back ends:

Requirement Version/Comment
An Elasticsearch server (for Ceilometer Resources
and Events)

2.0.0 or higher, the RESTful API must be enabled over
port 9200

A running InfluxDB server (for Ceilometer Samples) 0.10.0 or higher, the RESTful API must be enabled over
port 8086

1.4 Compatibilities

The OpenStack Telemetry plugin is compatible with the following plugins:

• To install the back-end services automatically, use the following StackLight plugins:

Plugin Version/Comment
StackLight InfluxDB-Grafana 0.10.0 or newer
StackLight
Elasticsearch-Kibana

0.10.2 or newer. If the Resource API is disabled, the version may be
0.10.0

• To use Kafka as a message queue, install:

1.3. Requirements 3

https://docs.mirantis.com/openstack/fuel/fuel-9.0/mos-planning-guide.html#monitoring-custom-transformed-metrics
https://hekad.readthedocs.io/en/stable/message/index.html
https://github.com/mozilla-services/hindsight/tree/master/docs

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

Plugin Version/Comment
Kafka 1.0.0

1.5 Prerequisites

Prior to installing the OpenStack Telemetry plugin, you may want to install the back-end services the plugin uses to
store the data. These back-end services include the following:

• Elasticsearch

• InfluxDB

To install the back-end services, use one of the options:

• Automatic installation within a Fuel environment using the following Fuel plugins:

– StackLight Elasticsearch-Kibana plugin

– StackLight InfluxDB-Grafana plugin

• Manual installation outside of a Fuel environment. The installation must comply with the Requirements of the
OpenStack Telemetry plugin.

1.6 Limitations

The OpenStack Telemetry plugin for Fuel has the following limitations:

• Ceilometer API is not fully supported by default. The following Ceilometer commands are supported:

– By default:

* ceilometer sample-list

* ceilometer statistics

– If the Resource API is enabled:

* ceilometer resource-list

* ceilometer meter-list

– If the Event API is enabled:

* ceilometer event-list

Ceilometer complex queries are not supported.

• The Telemetry plugin does not store all the OpenStack resources metadata along with the Ceilometer Samples.
The default list is as follows:

status

deleted

container_format

min_ram

updated_at

min_disk

is_public size

checksum

1.5. Prerequisites 4

http://fuel-plugin-elasticsearch-kibana.readthedocs.io/en/latest
http://fuel-plugin-influxdb-grafana.readthedocs.io/en/latest
http://docs.openstack.org/developer/ceilometer/webapi/v2.html#complex-query

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

created_at disk_format

protected

instance_host

host

display_name

instance_id

instance_type

status

state

user_metadata.stack

To use the Ceilometer API requests based on metadata, add the required metadata as described in Configure the
plugin.

• The coordination for Ceilometer central agent and Aodh alarm evaluator services is switched off if RabbitMQ is
used. The Telemetry plugin is based on the Ceilometer used in Mirantis OpenStack. Therefore, the notification
agents do not require coordination. The coordination through tooz with Zookeeper back end is supported if the
Kafka plugin is installed.

• The OpenStack Telemetry plugin cannot be used if the Redis plugin is already enabled in the environment.

1.7 Licenses

1.7.1 Third-party components

Name Project website License
Heka https://github.com/mozilla-services/heka Mozilla Public License
Hindsight https://github.com/mozilla-services/hindsight Mozilla Public License

1.8 References

For more information about the software discussed in this document, see the following links:

• The StackLight Collector plugin project at GitHub

• The StackLight Elasticsearch-Kibana plugin project at GitHub

• The StackLight InfluxDB-Grafana plugin project at GitHub

• The official Kibana documentation

• The official Elasticsearch documentation

• The official InfluxDB documentation

• The official Grafana documentation

• The official Heka documentation

• The official Hindsight documentation

1.7. Licenses 5

https://github.com/openstack/fuel-plugin-ceilometer-redis
https://github.com/mozilla-services/heka
https://github.com/mozilla-services/hindsight
https://github.com/openstack/fuel-plugin-lma-collector
https://github.com/openstack/fuel-plugin-elasticsearch-kibana
https://github.com/openstack/fuel-plugin-influxdb-grafana
https://www.elastic.co/guide/en/kibana/3.0/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/index.html
https://docs.influxdata.com/influxdb/v0.10/
http://docs.grafana.org/v2.6/
https://hekad.readthedocs.io/en/stable/message/index.html
https://github.com/mozilla-services/hindsight/tree/master/docs

CHAPTER

TWO

INSTALLING THE OPENSTACK TELEMETRY PLUGIN FOR FUEL

2.1 Introduction

Before you install the OpenStack Telemetry plugin, verify that your environment meets the requirements described in
Requirements. You must have the Fuel Master node installed and configured before you can install the plugin.

You can install the OpenStack Telemetry plugin using one of the following options:

• Install using the RPM file

• Install from source

2.2 Install using the RPM file

To install the OpenStack Telemetry plugin using the RPM file of the Fuel plugins catalog:

1. Download the OpenStack Telemetry plugin from the Fuel plugins catalog.

2. Copy the plugin .rpm file to the Fuel Master node:

Example:

scp telemetry-1.0-1.0.1-1.noarch.rpm root@fuel-master:/tmp

3. Log in to the Fuel Master node CLI as root.

4. Install the plugin using the Fuel Plugins CLI:

fuel plugins --install telemetry-1.0-1.0.0-1.noarch.rpm

5. Verify that the plugin is installed correctly:

fuel plugins
id	name	version	package_version	releases
1 | telemetry | 1.0.1 | 4.0.0 | ubuntu (mitaka-9.0)

6. Proceed to Configure the plugin.

2.3 Install from source

Alternatively, you may want to build the plugin RPM file from source if, for example, you want to test the latest
features of the master branch or customize the plugin.

6

https://www.mirantis.com/validated-solution-integrations/fuel-plugins/
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/cli/cli_plugins.html

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

Note: Running a Fuel plugin that you built yourself is at your own risk and will not be supported.

To install the OpenStack Telemetry plugin from source, first prepare an environment to build the RPM file. The
recommended approach is to build the RPM file directly onto the Fuel Master node so that you will not have to copy
that file later on.

To prepare an environment and build the plugin:

1. Install the standard Linux development tools:

[root@home ~] yum install createrepo rpm rpm-build dpkg-devel

2. Install the Fuel Plugin Builder. To do that, you should first get pip:

[root@home ~] easy_install pip

3. Then install the Fuel Plugin Builder (the fpb command line) with pip:

[root@home ~] pip install fuel-plugin-builder

Note: You may also need to build the Fuel Plugin Builder if the package version of the plugin is higher than
the package version supported by the Fuel Plugin Builder you get from pypi. For instructions on how to build
the Fuel Plugin Builder, see the Install Fuel Plugin Builder section of the Fuel Plugin SDK Guide.

4. Clone the plugin repository:

[root@home ~] git clone https://github.com/openstack/fuel-plugin-openstack-
→˓telemetry

5. Verify that the plugin is valid:

[root@home ~] fpb --check ./fuel-plugin-openstack-telemetry

6. Build the plugin:

[root@home ~] fpb --build ./fuel-plugin-openstack-telemetry

To install the plugin:

1. Once you create the RPM file, install the plugin:

[root@fuel ~] fuel plugins --install ./fuel-plugin-openstack-telemetry/*.noarch.
→˓rpm

2. Verify that the plugin is installed correctly:

fuel plugins
id	name	version	package_version	releases
1 | telemetry | 1.0.1 | 4.0.0 | ubuntu (mitaka-9.0)

3. Proceed to Configure the plugin.

2.3. Install from source 7

http://docs.openstack.org/developer/fuel-docs/plugindocs/fuel-plugin-sdk-guide/create-plugin/install-plugin-builder.html

CHAPTER

THREE

CONFIGURING THE OPENSTACK TELEMETRY PLUGIN FOR FUEL

3.1 Configure the plugin

Once installed, configure the OpenStack Telemetry plugin.

To configure the OpenStack Telemetry plugin:

1. Log in to the Fuel web UI.

2. Verify that the Telemetry plugin is listed in the Plugins tab:

3. Create an OpenStack environment as described in the Fuel User Guide or use an existing one.

4. To enable the plugin, navigate to the Environments tab and select The OpenStack Telemetry Plugin:

8

http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/create-environment.html

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

5. Optional. To enable Event API and Resource API, select Advanced Settings:

3.1. Configure the plugin 9

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

Once selected, configure the Elasticsearch cluster that stores Ceilometer events and resources:

• Select Use local Elasticsearch if you have deployed the Elasticsearch-Kibana plugin.

• Otherwise, select Use External Elasticsearch and define the IP or DNS name and port for the Elasticsearch
cluster you want to use.

6. Configure InfluxDB:

3.1. Configure the plugin 10

The OpenStack Telemetry plugin for Fuel Documentation, Release 1.0.1

• Select Use local InfluxDB if you have deployed the InfluxDB-Grafana plugin.

• Otherwise, select Use External InfluxDB and define the IP or DNS name, port, database name, username,
and password for the InfluxDB server you want to use to store the Ceilometer-related data.

7. Configure additional metadata to be stored along with Ceilometer samples in InfluxDB:

By default, the Telemetry plugin keeps the list of metadata fields described in the Limitations section. If this list
is not sufficient, add the names of metadata fields.

3.1. Configure the plugin 11

	Overview
	Installing the OpenStack Telemetry Plugin for Fuel
	Configuring the OpenStack Telemetry Plugin for Fuel

